Hypothesis and theory-based studies in microbial ecology have been neglected in favour of those that are descriptive and aim for data-gathering of uncultured microbial species. This tendency limits our capacity to create new mechanistic explanations of microbial community dynamics, hampering the improvement of current environmental biotechnologies. We propose that a multiscale modelling bottom-up approach (piecing together sub-systems to give rise to more complex systems) can be used as a framework to generate mechanistic hypotheses and theories (
in-silico
bottom-up methodology). To accomplish this, formal comprehension of the mathematical model design is required together with a systematic procedure for the application of the
in-silico
bottom-up methodology. Ruling out the belief that experimentation before modelling is indispensable, we propose that mathematical modelling can be used as a tool to direct experimentation by validating theoretical principles of microbial ecology. Our goal is to develop methodologies that effectively integrate experimentation and modelling efforts to achieve superior levels of predictive capacity.