Fires are adverse events with tangible costs for property and human life. Quantification of the immediate and direct costs of fire provide a metric for understanding the social and economic impact of fire and for assessing progress in fire prevention and protection. In addition to their physical costs, fires have a range of less immediate and obvious adverse consequences on the natural environment. These include air contamination from the fire plume (whose deposition is likely to subsequently include land and water contamination), contamination from water runoff containing toxic products, and other environmental discharges or releases from burned materials. Current efforts to improve the sustainability of buildings focus on increasing energy efficiency and reducing the embodied carbon. This overlooks the fact that a fire event could reduce the overall sustainability of a building through the release of pollutants and the subsequent re-build. Several pieces of work exist on the quantification of the environmental impact of fire, but there is a need to pull this information together and to identify the technical gaps that still exist. This publication pulls together the project aims, discusses the sources reviewed, presents a framework that was postulated for quantifying the environmental impact of fire, describes the gaps in knowledge, and presents a plan forward. The research resulted in a more in-depth appreciation of the environmental impact of fire, data, tools and methods that might be undertaken to analysis the environmental impacts as part of a fire engineering analysis, and highlights areas where future research is needed.