We examined the variation in liana community composition and structure across geopedological land units to test the hypothesis that environmental heterogeneity is a driving force in liana community assembly. The study site was the Los Tuxtlas Tropical Biology Station, SE Mexico, a reserve that encompasses 640 ha of tropical rainforest. We sampled all lianas with basal diameter ≥1 cm in three 0.5‐ha plots established in each of five land units (totaling 15 plots and 7.5 ha). We censused 6055 individuals and 110 species. Overall, the most speciose families were also the most abundant ones. Density and basal area of some dominant liana species differed among land units, and a permutational multivariate analysis of variance (PERMANOVA) and a non‐metric multidimensional scaling ordination (NMDS) revealed differences in the presence, density, and basal area of liana species across the landscape. Liana composition and structure were highly heterogeneous among land units, suggesting that variations in soil water availability and relief are key drivers of liana community spatial differentiation. By showing that soil and topography play an important role at the landscape scale, we underscore the ecological relevance of environmental heterogeneity for liana community assembly. In the future, as our ability to assess the local environmental complexity increases, we will gain a better understanding of the liana community assembly process and their heterogeneous distribution in tropical forests.