Full details of studies are disclosed on the total synthesis of binding pocket analogues of vancomycin, bearing the peripheral L-vancosaminyl-1,2-D-glucosyl disaccharide, that contain changes to a key single atom in the residue 4 amide (residue 4 carbonyl O → S, NH, H2) designed to directly address the underlying molecular basis of resistance to vancomycin. Also disclosed are studies piloting the late stage transformations conducted on the synthetically more accessible C-terminus hydroxymethyl aglycon derivatives and full details of the peripheral chlorobiphenyl functionalization of all the binding pocket modified vancomycin analogues designed for dual D-Ala-D-Ala/D-Ala-D-Lac binding are reported. Their collective assessment indicate that combined binding pocket and chlorobiphenyl peripherally modified analogues exhibit a remarkable spectrum of antimicrobial activity (VSSA, MRSA, VanA and VanB VRE) and impressive potencies against both vancomycin-sensitive and vancomycin-resistant bacteria (MICs = 0.06–0.005 μg/mL and 0.5–0.06 μg/mL for the amidine and methylene analogues, respectively) and likely benefit from two independent and synergistic mechanisms of action, only one of which is dependent on D-Ala-D-Ala/D-Ala-D-Lac binding. Such analogues are likely to display especially durable antibiotic activity not prone to rapidly acquired clinical resistance.