The next frontier in drug discovery could be the semi-synthesis of non-natural, xenobiotic compounds combining both natural product biosynthesis and synthetic chemistry. However, the required tools and underlying engineering principles are yet to be fully understood. One way to investigate non-natural product biosynthesis is to probe the substrate promiscuity of a clinically relevant biosynthesis pathway. Violacein is a bisindole compound produced by the VioABCDE biosynthesis pathway using L-tryptophan as the starting substrate. Previous studies have shown that violacein exhibits antimicrobial properties, and synthetic analogues of violacein might give rise to new targets for therapeutic development to combat antimicrobial resistance. By adding seven types of tryptophan analogues available commercially, 62 new violacein or deoxyviolacein analogues were generated with a synthetic violacein biosynthesis pathway expressed in Escherichia coli, demonstrating the promiscuity of violacein biosynthesis enzymes. Growth inhibition assays against Bacillus subtilis, a Gram-positive bacterium, were carried out to measure growth inhibitory activity of violacein analogues compared to violacein. In addition, we show that four new 7-chloro analogues of violacein or deoxyviolacein can be generated in vivo by combining the rebeccamycin and violacein biosynthesis pathways and purified 7-chloro violacein was found to have similar growth inhibitory activity compared to violacein. Structural studies of VioA revealed active site residues that are important for catalytic activity, and further pathway recombination with VioA homologues in related bisindole pathways may lead to more efficient enzymes that would accept tryptophan analogues more readily.