The microsymbiont population in soybean root nodules (Glycine max L. cv Williams 82 inoculated with Bradyrhizobium japonicum 2143) was characterized during symbiotic development to determine the extent of heterogeneity in this population. The microsymbiont population was isolated by centrifugation through a continuous sucrose gradient (44 to 57% weight to weight ratio) and appeared homogeneous at each age examined up to 26 days after planting based on the symmetrical distribution of the population, enzyme activities, poly-.8-hydroxybutyrate contents, protein contents, and viabilities. Some differences in viability, protein content, and acetylene reduction activity were observed at later ages. The population migrated to progressively lighter buoyant densities with increasing age until a density equivalent to 48% sucrose was reached. The changing density correlated directly with the increasing poly-fi-hydroxybutyrate to protein ratio. The acetylene reduction activity, based on microsymbiont concentration, followed the same developmental pattern as whole nodules. On a protein basis, the decline of acetylene reduction activity was later and reflected the decrease in protein content per cell. These results suggested that the microsymbiont population, which resulted from inoculation of B. japonicum 2143 onto Williams 82 cultivar of soybeans, developed as a homogeneous population.