Background: People living with HIV (PLWH) are at higher risk of heart failure (HF) and preceding subclinical cardiac abnormalities, including left atrial dilation, compared to people without HIV (PWOH). Hypothesized mechanisms include premature aging linked to chronic immune activation. We leveraged plasma proteomics to identify potential novel contributors to HIV-associated differences in indexed left atrial volume (LAVi) among PLWH and PWOH and externally validated identified proteomic signatures with incident HF among a cohort of older PWOH. Methods: We performed proteomics (Olink Explore 3072) on plasma obtained concurrently with cardiac magnetic resonance imaging among PLWH and PWOH in the United States. Proteins were analyzed individually and as agnostically defined clusters. Associations with HIV serostatus and LAVi were estimated using multivariable regression with robust variance. Among an independent general population cohort, we estimated associations between identified signatures and LAVi using linear regression and incident HF using Cox regression. Results: Among 352 participants (age 55±6 years; 25% female), 61% were PLWH (88% on ART; 73% with undetectable HIV RNA) and mean LAVi was 29±9 mL/m2. Of 2594 analyzed proteins, 439 were associated with HIV serostatus, independent of demographics, hepatitis C virus infection, renal function, and substance use (FDR<0.05). We identified 73 of these proteins as candidate contributors to the independent association between positive HIV serostatus and higher LAVi, enriched in tumor necrosis factor (TNF) signaling and immune checkpoint proteins regulating T cell, B cell, and NK cell activation. We identified one protein cluster associated with LAVi and HIV regardless of HIV viral suppression status, which comprised 42 proteins enriched in TNF signaling, ephrin signaling, and extracellular matrix (ECM) organization. This protein cluster and 30 of 73 individual proteins were associated with incident HF among 2273 older PWOH (age 68±9 years; 52% female; 8.5±1.4 years of follow-up). Conclusion: Proteomic signatures that may contribute to HIV-associated LA remodeling were enriched in immune checkpoint proteins, cytokine signaling, and ECM organization. These signatures were also associated with incident HF among older PWOH, suggesting specific markers of chronic immune activation, systemic inflammation, and fibrosis may identify shared pathways in HIV and aging that contribute to risk of HF.