Feline coronavirus type 1 (FCoV-1) is widely known for causing feline infectious peritonitis (FIP), a systemic infection that is often fatal, with the virus known as the FIPV biotype. However, subclinical disease also occurs, in which cats may not show signs and intermittently shed the virus, including in feces, possibly for long periods of time. This virus is known as the FECV biotype. Progression of FECV to FIPV has been linked to several genomic changes, however a specific region of the viral spike protein at the interface of the spike S1 and S2 domains has been especially implicated. In this study, we followed a cat (#576) for six years from 2017, at which time FCoV-1 was detected in feces and conjunctival swabs, until 2022, when the animal was euthanized based on a diagnosis of alimentary small cell lymphoma. Over this time period, the cat was clinically diagnosed with inflammatory bowel disease and chronic rhinitis, and cardiac problems were also suspected. Using hybridization capture targeting the spike (S) gene of FCoV followed by next-generation sequencing, we screened 27 clinical samples. We detected FCoV-1 in 4 samples taken in 2017 (intestine and nasal tissue, feces, and conjunctiva), and 3 samples taken in 2022 (feces, and intestinal and heart tissue), but not in fecal samples taken in 2019 and 2020. Next, we focused on the S1/S2 region within S, which contains the furin cleavage site (FCS), a key regulator of viral transmission and pathogenesis. We show that the FCoV-1 variants obtained from feces in 2017 and 2022 were identical, while the ones from conjunctiva (2017), heart (2022), and intestine (2017 and 2022) were distinct. Sequence comparison of all the variants obtained showed that most of the non-synonymous changes in the S1/S2 region occur within the FCS. In the heart, we found two variants that differed by a single nucleotide, resulting in distinct FCS motifs that differ in one amino acid. It is predicted that one of these FCS motifs will down-regulate spike cleavability. The variant from the conjunctiva (2017) had a 6-nucleotide in-frame insertion that resulted in a longer and more exposed S1/S2 loop, which is predicted to be more accessible to the furin protease. Our studies indicate that FCoV-1 can independently persist in the gastrointestinal tract and heart of a cat over a long period of time without evidence of typical FIP signs, with intermittent viral shedding from the gastrointestinal and respiratory tracts.