Abstract-Most brain disorders including Alzheimer's disease (AD) are related to alterations in the normal brain network organization and function. Exploring these network alterations using non-invasive and easy to use technique is a topic of great interest. In this paper, we collected EEG resting-state data from AD patients and healthy control subjects. Functional connectivity between scalp EEG signals was quantified using the phase locking value (PLV) for 6 frequency bands, θ (4-8 Hz), α1(8-10 Hz), α2(10-13 Hz), ß(13-30 Hz), γ(30-45 Hz), and broad band (0.2-45 Hz). To assess the differences in network properties, graph-theoretical analysis was performed. AD patients showed decrease of mean connectivity, average clustering and global efficiency in the lower alpha band. Positive correlation between the cognitive score and the extracted graph measures was obtained, suggesting that EEG could be a promising technique to derive new biomarkers of AD diagnosis.