Among different types of small RNA molecules, distinct types of microRNAs (miRNAs) are expressed in many cell types, where they modulate RNA stability and translation, thus controlling virtually every aspect of tissue development, proliferation, differentiation, and function. Aberrant miRNA expression has been linked to discrete pathological processes. As the placenta plays a pivotal role in governing fetal development, it is not surprising that the placenta expresses numerous types of miRNAs. Whereas many of these miRNAs are ubiquitously expressed, certain miRNA species are largely unique to the placenta. Research in the field of placental miRNAs is in its early phase, with most studies centering on cataloging placental miRNA species or examining differences in placental miRNA expression between placentas from normal pregnancies and those from pregnancies complicated by pathologies that are associated with placental dysfunction. Recent research endeavors ventured to assess the function of miRNAs in cultured placental trophoblasts, using in vitro conditions that model relevant pathophysiological processes. The impact of miRNA-mediated repression on the trophoblast transcriptome, particularly in response to genetic and environmental perturbations, remains largely unknown. Further in depth studies are required to unravel the functional significance of miRNAs in molding placental robustness, which must constantly adapt to altered maternal physiological status in order to sustain optimal support to the developing embryo. In this review we summarize the current information about placental miRNAs expression, and the lingering challenges in this field.