MicroRNAs (miRNAs) are small noncoding RNAs that play fundamental roles in diverse biological and pathological processes by targeting the expression of specific genes. Here, we identified 38 methylation-associated miRNAs, the expression of which could be epigenetically restored by cotreatment with 5-aza-2 0 -deoxycytidine and trichostatin A. Among these 38 miRNAs, we further analyzed miR-34b, miR-127-3p, miR-129-3p and miR-409 because CpG islands are predicted adjacent to them. The methylation-silenced expression of these miRNAs could be reactivated in gastric cancer cells by treatment with demethylating drugs in a time-dependent manner. Analysis of the methylation status of these miRNAs showed that the upstream CpG-rich regions of mir-34b and mir-129-2 are frequently methylated in gastric cancer tissues compared to adjacent normal tissues, and their methylation status correlated inversely with their expression patterns. The expression of miR-34b and miR-129-3p was downregulated by DNA hypermethylation in primary gastric cancers, and the low expression was associated with poor clinicopathological features. In summary, our study shows that tumor-specific methylation silences miR-34b and miR-129 in gastric cancer cells.
BackgroundMicroRNAs (miRNAs) are small non-protein-coding RNAs. miRNA genes need several biogenesis steps to form function miRNAs. However, the precise mechanism and biology involved in the mature miRNA molecules are not clearly investigated. In this study, we conducted in-depth analyses to examine the arm selection and isomiRs using NGS platform.MethodsWe sequenced small RNAs from one pair of normal and gastric tumor tissues with Solexa platform. By analyzing the NGS data, we quantified the expression profiles of miRNAs and isomiRs in gastric tissues. Then, we measured the expression ratios of 5p arm to 3p arm of the same pre-miRNAs. And, we used Kolmogorov-Smirnov (KS) test to examine isomiR pattern difference between tissues.ResultsOur result showed the 5p arm and 3p arm miRNA derived from the same pre-miRNAs have different tissue expression preference, one preferred normal tissue and the other preferred tumor tissue, which strongly implied that there could be other mechanism controlling mature miRNA selection in addition to the known hydrogen-bonding selection rule. Furthermore, by using the KS test, we demonstrated that some isomiR types preferentially occur in normal gastric tissue but other types prefer tumor gastric tissue.ConclusionsArm selections and isomiR patterns are significantly varied in human cancers by using deep sequencing NGS data. Our results provided a novel research topic in miRNA regulation study. With advanced bioinformatics and molecular biology studies, more robust conclusions and insight into miRNA regulation can be achieved in the near future.
Carcinoma of the stomach is one of the most prevalent cancer types in the world. Although the incidence of gastric cancer is declining, the outcomes of gastric cancer patients remain dismal because of the lack of effective biomarkers to detect early gastric cancer. Modern biomedical research has explored many potential gastric cancer biomarker genes by utilising serum protein antigens, oncogenic genes or gene families through improving molecular biological technologies, such as microarray, RNA-Seq and the like. Recently, the small noncoding microRNAs (miRNAs) have been suggested to be critical regulators in the oncogenesis pathways and to serve as useful clinical biomarkers. This new class of biomarkers is emerging as a novel molecule for cancer diagnosis and prognosis, including gastric cancer. By translational suppression of target genes, miRNAs play a significant role in the gastric cancer cell physiology and tumour progression. There are potential implications of previously discovered gastric cancer molecular biomarkers and their expression modulations by respective miRNAs. Therefore, many miRNAs are found to play oncogenic roles or tumour-suppressing functions in human cancers. With the surprising stability of miRNAs in tissues, serum or other body fluids, miRNAs have emerged as a new type of cancer biomarker with immeasurable clinical potential.
Many of the known microRNAs (miRNAs) are encoded by polycistronic transcripts and are thought to be co-expressed. In this study, we discovered that the expression of a large miRNA cluster (C19MC) on human chromosome 19 is upregulated by the demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC), in AGS gastric cancer cells. We found that C19MC was rarely expressed in most cells, but its expression was restored through DNA demethylation. We confirmed that this miRNA cluster was mainly expressed in the placenta, as previously reported. Furthermore, its expression pattern was highly correlated with the methylation state of a distal CpG-rich region located about 17.6 kb upstream of the miRNA cluster. Using combined bisulfite restriction analysis (COBRA) and bisulfite-sequencing techniques, we determined that this CpG-rich region is hypermethylated in the AGS and HeLa cells, but hypomethylated in the placenta tissue. In conclusion, we demonstrated that the expression pattern of the C19MC was activated in human cancer cells through demethylation of a CpG-rich region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.