There is substantial evidence that paternal obesity is associated not only with an increased incidence of infertility, but also with an increased risk of metabolic disturbance in adult offspring. Apparently, several mechanisms may contribute to the sperm quality alterations associated with paternal obesity, such as physiological/hormonal alterations, oxidative stress, and epigenetic alterations. Along these lines, modifications of hormonal profiles namely reduced androgen levels and elevated estrogen levels, were found associated with lower sperm concentration and seminal volume. Additionally, oxidative stress in testis may induce an increase of the percentage of sperm with DNA fragmentation. The latter, relate to other peculiarities such as alteration of the embryonic development, increased risk of miscarriage, and development of chronic morbidity in the offspring, including childhood cancers. Undoubtedly, epigenetic alterations (ie, DNA methylation, chromatin modifications, and small RNA deregulation) of sperm related to paternal obesity and their consequences on the progeny are poorly understood determinants of paternal obesity-induced transmission. In this review, we summarize and discuss the data available in the literature regarding the biological, physiological, and molecular consequences of paternal obesity on male fertility potential and ultimately progeny health.