“…Just as a wide variety of features has been used, an equally varied set of classification methods can be found in the literature. The classification methods varied from simple threshold (Altunay, Telatar, & Erogul, 2010;Martinez-Vargas, et al, 2011), rule based decisions (Gotman, 1990(Gotman, , 1999, or linear classifiers (Ghosh-Dastidar, Iscan, et al, 2011;Liang, et al, 2010;Subasi & Gursoy, 2010) to ANNs , 2008Mousavi, et al, 2008;Nigam & Graupe, 2004;Srinivasan, et al, 2005Srinivasan, et al, , 2007Tzallas, et al, 2007aTzallas, et al, , 2007bTzallas, et al, , 2009Ubeyli, 2006Ubeyli, , 2009cUbeyli, 2010b) that have a complex shaped decision boundary. Other classification methods have been used using SVMs (Chandaka, et al, 2009;Iscan, et al, 2011;Liang, et al, 2010;Lima, et al, 2010;Subasi & Gursoy, 2010;Ubeyli, 2008a;Ubeyli, 2010a), k-nearest neighbour classifiers (Guo, et al, 2011;Iscan, et al, 2011;Liang, et al, 2010;Orhan, et al, 2011;Tzallas, et al, 2009), quadratic analysis (Iscan, et al, 2011), logistic regression Tzallas, et al, 2009), naive Bayes classifiers (Iscan, et al, 2011;Tzallas, et al, 2009), decision trees (Iscan, et al, 2011;Polat & Gunes, 2007;…”