We propose Graph-Cut RANSAC, GC-RANSAC in short, a new robust geometric model estimation method where the local optimization step is formulated as energy minimization with binary labeling, applying the graph-cut algorithm to select inliers. The minimized energy reflects the assumption that geometric data often form spatially coherent structures -it includes both a unary component representing point-to-model residuals and a binary term promoting spatially coherent inlier-outlier labelling of neighboring points. The proposed local optimization step is conceptually simple, easy to implement, efficient with a globally optimal inlier selection given the model parameters. Graph-Cut RANSAC, equipped with "the bells and whistles" of USAC and MAGSAC++, was tested on a range of problems using a number of publicly available datasets for homography, 6D object pose, fundamental and essential matrix estimation. It is more geometrically accurate than state-of-the-art robust estimators, fails less often and runs faster or with speed similar to less accurate alternatives.