Falls pose a great danger to social development, especially to the elderly population. When a fall occurs, the body’s center of gravity moves from a high position to a low position, and the magnitude of change varies among body parts. Most existing fall recognition methods based on deep learning have not yet considered the differences between the movement and the change in amplitude of each body part. Besides, some problems exist such as complicated design, slow detection speed, and lack of timeliness. To alleviate these problems, a lightweight subgraph-based deep learning method utilizing skeleton information for fall recognition is proposed in this paper. The skeleton information of the human body is extracted by OpenPose, and an end-to-end lightweight subgraph-based network is designed. Sub-graph division and sub-graph attention modules are introduced to add a larger perceptual field while maintaining its lightweight characteristics. A multi-scale temporal convolution module is also designed to extract and fuse multi-scale temporal features, which enriches the feature representation. The proposed method is evaluated on a partial fall dataset collected in NTU and on two public datasets, and outperforms existing methods. It indicates that the proposed method is accurate and lightweight, which means it is suitable for real-time detection and rapid response to falls.
Narrow band imaging is an established non-invasive tool used for the early detection of laryngeal cancer in surveillance examinations. Most images produced from the examination are useless, such as blurred, specular reflection, and underexposed. Removing the uninformative frames is vital to improve detection accuracy and speed up computer-aided diagnosis. It often takes a lot of time for the physician to manually inspect the informative frames. This issue is commonly addressed by a classifier with task-specific categories of the uninformative frames. However, the definition of the uninformative categories is ambiguous, and tedious labeling still cannot be avoided. Here, we show that a novel unsupervised scheme is comparable to the current benchmarks on the dataset of NBI-InfFrames. We extract feature embedding using a vanilla neural network (VGG16) and introduce a new dimensionality reduction method called UMAP that distinguishes the feature embedding in the lower-dimensional space. Along with the proposed automatic cluster labeling algorithm and cost function in Bayesian optimization, the proposed method coupled with UMAP achieves state-of-the-art performance. It outperforms the baseline by 12% absolute. The overall median recall of the proposed method is currently the highest, 96%. Our results demonstrate the effectiveness of the proposed scheme and the robustness of detecting the informative frames. It also suggests the patterns embedded in the data help develop flexible algorithms that do not require manual labeling.
The 6D Pose estimation is a crux in many applications, such as visual perception, autonomous navigation, and spacecraft motion. For robotic grasping, the cluttered and self-occlusion scenarios bring new challenges to the this field. Currently, society uses CNNs to solve this problem. The CNN models will suffer high uncertainty caused by the environmental factors and the object itself. These models usually maintain a Gaussian distribution, which is not suitable for the underlying manifold structure of the pose. Many works decouple rotation from the translation and quantify rotational uncertainty. Only a few works pay attention to the uncertainty of the 6D pose. This work proposes a distribution that can capture the uncertainty of the 6D pose parameterized by the dual quaternions, meanwhile, the proposed distribution takes the periodic nature of the underlying structure into account. The presented results include the normalization constant computation and parameter estimation techniques of the distribution. This work shows the benefits of the proposed distribution, which provides a more realistic explanation for the uncertainty in the 6D pose and eliminates the drawback inherited from the planar rigid motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.