This paper describes a method, discovered and refined by parallel screening, for the epoxidation of alkenes. It uses hydrogen peroxide as the terminal oxidant, is promoted by catalytic amounts (1.0-0.1 mol %) of manganese(2+) salts, and must be performed using at least catalytic amounts of bicarbonate buffer. Peroxymonocarbonate, HCO(4)(-), forms in the reaction, but without manganese, minimal epoxidation activity is observed in the solvents used for this research, that is, DMF and (t)BuOH. More than 30 d-block and f-block transition metal salts were screened for epoxidation activity under similar conditions, but the best catalyst found was MnSO(4). EPR studies show that Mn(2+) is initially consumed in the catalytic reaction but is regenerated toward the end of the process when presumably the hydrogen peroxide is spent. A variety of aryl-substituted, cyclic, and trialkyl-substituted alkenes were epoxidized under these conditions using 10 equiv of hydrogen peroxide, but monoalkyl-alkenes were not. To improve the substrate scope, and to increase the efficiency of hydrogen peroxide consumption, 68 diverse compounds were screened to find additives that would enhance the rate of the epoxidation reaction relative to a competing disproportionation of hydrogen peroxide. Successful additives were 6 mol % sodium acetate in the (t)BuOH system and 4 mol % salicylic acid in the DMF system. These additives enhanced the rate of the desired epoxidation reaction by 2-3 times. Reactions performed in the presence of these additives require less hydrogen peroxide and shorter reaction times, and they enhance the yields obtained from less reactive alkene substrates. Possible mechanisms for the reaction are discussed.