2012
DOI: 10.3934/jmd.2012.6.1
|View full text |Cite
|
Sign up to set email alerts
|

Équidistribution, comptage et approximation par irrationnels quadratiques

Abstract: Soit M une variété hyperbolique de volume fini, nous montrons que les hypersurfaces équidistantes à une sous-variété C de volume fini totalement géodésique s'équidistribuent dans M . Nous donnons un asymptotique précis du nombre de segments géodésiques de longueur au plus t, perpendiculaires communs à C et au bord d'un voisinage cuspidal de M . Nous en déduisons des résultats sur le comptage d'irrationnels quadratiques sur Q ou sur une extension quadratique imaginaire de Q, dans des orbites données des sous-gr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
46
0

Year Published

2013
2013
2019
2019

Publication Types

Select...
3
2

Relationship

3
2

Authors

Journals

citations
Cited by 15 publications
(46 citation statements)
references
References 50 publications
0
46
0
Order By: Relevance
“…Many papers have given necessary and sufficient condition for when a quadratic irrational element is in the same orbit under as its Galois conjugate, see for instance [12,35,44,45] and also [42,Prop. 5.3].…”
Section: Applications To Diophantine Approximationmentioning
confidence: 99%
See 1 more Smart Citation
“…Many papers have given necessary and sufficient condition for when a quadratic irrational element is in the same orbit under as its Galois conjugate, see for instance [12,35,44,45] and also [42,Prop. 5.3].…”
Section: Applications To Diophantine Approximationmentioning
confidence: 99%
“…This difference is good to bear in mind when comparing our results with for example the results of [11,18,48] cited in the Introduction. We refer to [42,Lem. 5.2] for a treatment of some algebraic number theory aspects of h(α).…”
Section: Proposition 63mentioning
confidence: 99%
“…For every real quadratic irrational number α, Parkkonen and Paulin [9,10] introduced the quantity h(α) := 2 |α − α σ | , (1.1) which may be viewed as a measure of the complexity of α. As noted in [9], this quantity behaves in a very different way from the naïve height of α (the naïve height of an algebraic number is the maximum of the absolute values of the coefficients of its minimal defining polynomial over the rational integers), a notion which is commonly used in Diophantine approximation; see e.g.…”
Section: Introductionmentioning
confidence: 99%
“…In other words, E α 0 is the set of quadratic numbers whose continued fraction expansion is ultimately periodic with the same period as α 0 or as α σ 0 . For a real number ξ not in Q ∪ E α 0 , Parkkonen and Paulin [9,10] the approximation constant c α 0 (ξ) of ξ by elements of E α 0 and they proved that c α 0 (ξ) is always finite. Observe that it follows immediately from (1.2) that c α 0 +k (ξ + k ) = c α 0 (ξ), (1.3) for every integers k and k .…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation