A c c e p t e d m a n u s c r i p t 2
AbstractI investigate the stability of the homogeneous equilibrium of a discrete-time metapopulation assuming costly dispersal with arbitrary (but fixed) spatial pattern of connectivity between the local populations. First, I link the stability of the metapopulation to the stability of a single isolated population by proving that the homogeneous metapopulation equilibrium, provided that it exists, is stable if and only if a single population, which is subject to extra mortality matching the average dispersal-induced mortality of the metapopulation, has a stable fixed point. Second, I demonstrate that extra mortality may destabilize the fixed point of a single population.Taken together, the two results imply that costly dispersal can destabilize the homogeneous equilibrium of a metapopulation. I illustrate this by simulations and discuss why earlier work, arriving at the opposite conclusion, was flawed.A c c e p t e d m a n u s c r i p t 3