Automata-logic connections are pillars of the theory of regular languages.
Such connections are harder to obtain for transducers, but important results
have been obtained recently for word-to-word transformations, showing that the
three following models are equivalent: deterministic two-way transducers,
monadic second-order (MSO) transducers, and deterministic one-way automata
equipped with a finite number of registers. Nested words are words with a
nesting structure, allowing to model unranked trees as their depth-first-search
linearisations. In this paper, we consider transformations from nested words to
words, allowing in particular to produce unranked trees if output words have a
nesting structure. The model of visibly pushdown transducers allows to describe
such transformations, and we propose a simple deterministic extension of this
model with two-way moves that has the following properties: i) it is a simple
computational model, that naturally has a good evaluation complexity; ii) it is
expressive: it subsumes nested word-to-word MSO transducers, and the exact
expressiveness of MSO transducers is recovered using a simple syntactic
restriction; iii) it has good algorithmic/closure properties: the model is
closed under composition with a unambiguous one-way letter-to-letter transducer
which gives closure under regular look-around, and has a decidable equivalence
problem