2022
DOI: 10.48550/arxiv.2205.12542
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

ER-Test: Evaluating Explanation Regularization Methods for Language Models

Abstract: Neural language models' (NLMs') reasoning processes are notoriously hard to explain. Recently, there has been much progress in automatically generating machine rationales of NLM behavior, but less in utilizing the rationales to improve NLM behavior. For the latter, explanation regularization (ER) aims to improve NLM generalization by pushing the machine rationales to align with human rationales. Whereas prior works primarily evaluate such ER models via in-distribution (ID) generalization, ER's impact on out-of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?