Yb(3+)/Er(3+)/Cr(3+) triply doped transparent bulk glass ceramic containing orthorhombic YF3 and cubic Ga2O3 nanocrystals was fabricated by a melt-quenching route to explore its possible application in optical thermometry with high spatial and temperature resolution. It was experimentally observed that Yb(3+)/Er(3+) ions incorporated into the precipitated YF3 nanophase, while Cr(3+) ions partitioned into the crystallized Ga2O3 nanophase after glass crystallization. Importantly, such spatial isolation strategy efficiently suppressed adverse energy transfer among different active ions. As a consequence, intense green anti-Stokes luminescence originated from Er(3+): (2)H11/2,(4)S3/2 → (4)I15/2 transitions, and deep-red Stokes luminescence transitions assigned to Cr(3+): (2)E → (4)A2 radiation were simultaneously realized. Impressively, the intermediate crystal-field environment for Cr(3+) in Ga2O3 made it possible for lifetime-based temperature sensing owing to the competition of radiation transitions from the thermally coupled Cr(3+) (2)E and (4)T2 excited states. In the meantime, the low-phonon-energy environment for Er(3+) in YF3 was beneficial for upconversion fluorescence intensity ratio-based temperature sensing via thermal population between the (2)H11/2 state and (4)S3/2 state. The Boltzmann distribution theory and the two-level kinetic model were adopted to interpret these temperature-dependent luminescence of Er(3+) and Cr(3+), respectively, which gave the highest temperature sensitivities of 0.25% K(-1) at 514 K for Er(3+) and 0.59% K(-1) at 386 K for Cr(3+).