We address the task of answering natural language questions by using the large number of Frequently Asked Questions (FAQ) pages available on the web. The task involves three steps: (1) fetching FAQ pages from the web; (2) automatic extraction of question/answer (Q/A) pairs from the collected pages; and (3) answering users' questions by retrieving appropriate Q/A pairs. We discuss our solutions for each of the three tasks, and give detailed evaluation results on a collected corpus of about 3.6Gb of text data (293K pages, 2.8M Q/A pairs), with real users' questions sampled from a web search engine log. Specifically, we propose simple but effective methods for Q/A extraction and investigate task-specific retrieval models for answering questions. Our best model finds answers for 36% of the test questions in the top 20 results. Our overall conclusion is that FAQ pages on the web provide an excellent resource for addressing real users' information needs in a highly focused manner.