2 Genomic actions involve binding of androgens to ARs, which then translocate to the nucleus, bind to androgen-response elements, and alter gene expression. In contrast, ARs also induce rapid nongenomic signals that are generally mediated by cross-talk between the AR and either G-proteins or growth factor receptors (1-4). Although transcriptional effects of androgens have been extensively studied, mechanisms regulating nongenomic actions of androgens are poorly understood.One potential regulator of nongenomic androgen actions is paxillin. Paxillin is a multidomain adaptor protein that integrates many signals from integrins, cell surface receptors, and growth factors (10, 11). Through these interactions, paxillin regulates a variety of physiological functions, including matrix organization, cell motility, tissue remodeling, metastasis, gene expression, cell survival, and proliferation (10, 11). Paxillin is comprised of multiple structural domains that modulate protein-protein interactions (10) and numerous serine/threonine and tyrosine phosphorylation targets that act as docking sites for various signaling proteins. Phosphorylation of these sites by growth factor receptor-tyrosine kinases, Src kinases, and serine/threonine kinases regulate adaptor molecule binding that ultimately coordinates complex cell signaling pathways (10). The importance of paxillin in normal physiological functions is further evident from global paxillin knock-out studies, demonstrating that ablation of paxillin in mice is embryonic lethal (12,13).We previously demonstrated that in Xenopus oocytes, paxillin is essential for non-genomic androgen-induced Erk signaling and subsequent Erk-mediated oocyte maturation (5). Specifically, paxillin is required for synthesis and activation of MOS (the germ cell Raf homolog), which then promotes MEK and subsequently Erk signaling (5). Interestingly, Erk-mediated phosphorylation of paxillin is also required for androgen-induced oocyte maturation. Thus, in oocytes, paxillin is both an affector and effector of Erk signaling.Here we significantly extend our findings in Xenopus oocytes to a mammalian somatic system. Given the well defined function of androgens and Erk signaling (3, 6 -8) in prostate cancer