Clostridium perfringens
is an important zoonotic microorganism. The present study was undertaken to investigate prevalence, serotype distribution, antibiotic resistance, and genetic diversity of
C. perfringens
isolates from 4 duck farms in Shandong, China. In total, 424 samples of cloacal swabs and environment were collected from 3 commercial meat-type duck farms in Tai'an, Liaocheng, and Weifang and one breeder duck farm in Liaocheng between December 2018 and June 2019, of which, 207 (48.82%) samples were determined to be positive for
C. perfringens
; a total of 402 isolates of
C. perfringens
were recovered, all of which were identified as type A; 30.85% of the isolates were positive for
cpb2
gene; and
cpe
gene was found in 0.5% of the isolates. Antimicrobial susceptibility testing revealed that some of the isolates exhibited high antibiotic resistance, and 39.14% of the isolates were resistant to at least 5 classes of commonly used antibiotics. Multilocus sequence typing analysis showed that 85 representative isolates encompassed 54 different sequences types (
STs
), clustered in 5 clonal complexes (
CCs
) and 40 singletons. ST3, the most common ST in 54 STs, constituting 15.29% of all isolates, was also the most prevalent ST of isolates from the Liaocheng breeder duck farm (farm 3). CC1, the most prolific CC, containing 15.29% of the analyzed isolates, was the popular subtype of isolates from Liaocheng meat duck farm (farm 2). Although all the isolates belong to type A, the genetic diversity varied greatly in different regions; the Simpson's Diversity Index of STs for Liaocheng, Tai'an, and Weifang were 0.5941, 0.9198, and 0.9627, respectively. Some of cloacal isolates and environmental isolates were distributed in the same ST or CC, indicating close genetic relationship between cloacal isolates and environmental isolates. A portion of the strains from humans and ducks was found to be phylogenetically close. The close relationship between strains from humans and ducks, the high antibiotic resistance of
C. perfringens
, and the
cpe
-positive isolates indicated potential public health risks.