Recent findings have highlighted that constitutively active phosphatidylinositol 3-kinase (PI3K)/Akt/ mammalian target of rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it upregulates cell proliferation, survival, and drug resistance. These observations lend compelling weight to the application of PI3K/Akt/mTOR inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of the novel dual PI3K/mTOR inhibitor NVP-BEZ235, an orally bioavailable imidazoquinoline derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. NVP-BEZ235 was cytotoxic to a panel of T-ALL cell lines as determined by MTT assays. NVP-BEZ235 treatment resulted in cell cycle arrest and apoptosis. Western blots showed a dose-and timedependent dephosphorylation of Akt and mTORC1 downstream targets in response to NVP-BEZ235. Remarkably, NVP-BEZ235 targeted the side population of both T-ALL cell lines and patient lymphoblasts, which might correspond to leukemia-initiating cells, and synergized with chemotherapeutic agents (cyclophosphamide, cytarabine, dexamethasone) currently used for treating T-ALL patients. NVP-BEZ235 reduced chemoresistance to vincristine induced in Jurkat cells by coculturing with MS-5 stromal cells, which mimic the bone marrow microenvironment. NVP-BEZ235 was cytotoxic to T-ALL patient lymphoblasts displaying pathway activation, where the drug dephosphorylated eukaryotic initiation factor 4E-binding protein 1, at variance with rapamycin. Taken together, our findings indicate that longitudinal inhibition at two nodes of the PI3K/Akt/mTOR network with NVP-BEZ235, either alone or in combination with chemotherapeutic drugs, may be an efficient treatment of those T-ALLs that have aberrant upregulation of this signaling pathway for their proliferation and survival.