ABSTRACT. Survival in host phagocytes is an effective strategy for pathogenic microbes to spread. To understand the mechanisms of Aeromonas hydrophila survival within host macrophages, a library of mini-Tn10 transposon insertion mutants was constructed. The M85 mutant, whose survival in host macrophages was only 23.1% of that of the wild-type (WT) strain, was utilized for further study. Molecular analysis showed that a 756-bp open reading frame (ORF) (GenBank accession No. CP007576) in the M85 mutant was interrupted by miniTn10. This ORF encodes for a 183-amino acid protein and displays the highest sequence identity (99%) with the hemerythrin (Hr) protein of A. hydrophila subspecies hydrophila ATCC 7966. The survival of the WT, M85 mutant, and complemented M85 (Hr) strains were compared in host macrophages in vitro, and the results showed that M85 exhibited defective survival, while that of M85 (Hr) was restored. To investigate the possible mechanisms of A. hydrophila survival in host macrophages, the expression of Hr under hyperoxic and hypoxic conditions was evaluated. The results revealed that the expression of this protein was higher under hyperoxic conditions than under hypoxic conditions, which indicates that Hr protein expression is sensitive to O 2 concentration. Hydrogen peroxide sensitivity tests further suggested that the M85 mutant was more sensitive to oxidative stress than the WT and M85 (Hr) strains. Taken together, these results suggest that the Hr protein may act as an O 2 sensor and as a detoxifier of reactive oxygen species, and is required for A. hydrophila survival within host macrophages.