Bacterial wilt, caused by Ralstonia pseudosolanacearum (Rpsol) and R. solanacearum (Rsol), poses a significant challenge to solanaceous plant cultivation worldwide, particularly in tropical and subtropical regions. Even though Brazil is recognized as one of the centres of origin and diversity of Rsol, in certain regions of this large country there is an emerging prevalence of Rpsol in production fields. Therefore, this study aimed to comprehensively investigate the adaptive traits of Rpsol and Rsol using a polyphasic approach. A diverse collection of isolates from both species was assessed for their physiological, biochemical, ecological and pathogenic traits. Rsol isolates demonstrated greater adaptability to a broader range of temperature, salinity and pH. They also exhibited enhanced abilities in biofilm formation and bacteriocin production. Conversely, Rpsol isolates exhibited a broader utilization of carbon sources and displayed a wider spectrum of resistance to inhibitory substances. Moreover, they demonstrated higher infectivity towards different solanaceous hosts, showing a faster invasion and colonization process in the roots and stems of tomato plants compared to Rsol isolates. Based on our findings, we concluded that Rsol exhibited greater physiological and ecological adaptability, while Rpsol showed greater pathogenic and biochemical adaptability. These results suggest that the coexistence of both species is maintained through a balance of distinct traits within each species.