Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A simple method has been developed for metalation of porphyrinic compounds under homogeneous conditions at room temperature using a stable ethereal solution of MgI(2) and N,N-diisopropylethylamine. A previously developed heterogeneous procedure employs a mixture of a magnesium halide and a nonnucleophilic amine in a noncoordinating solvent at room temperature. The scope of the heterogeneous and homogeneous magnesium insertion procedures has been investigated across a family of 19 porphyrinic compounds, including synthetic porphyrins, synthetic or naturally occurring chlorins, and organic-soluble phthalocyanines. The rate of magnesium insertion increased in the series phthalocyanines < chlorins < porphyrins, which parallels the basicity of the ligands. Though phthalocyanines have the smallest core size, the magnesium phthalocyanines were far more stable than magnesium porphyrins to acid-induced demetalation. The heterogeneous method is broadly applicable to porphyrins, chlorins, and phthalocyanines. The homogeneous method is generally slower than the heterogeneous method, though both afford rapid metalation of most porphyrins, including electron-deficient, peripherally coordinating, or facially encumbered meso-substituted tetraarylporphyrins, and the beta-substituted octaethylporphyrin. Chlorin e(6) trimethyl ester and methyl pyropheophorbide a were metalated cleanly under homogeneous but not heterogeneous conditions, while pheophytin a failed with both methods. The homogeneous method failed altogether with phthalocyanines. Several methods in magnesium chemistry have been developed that augment these procedures, including a mild synthesis of tetraphenylchlorin and a streamlined separation of porphyrin, chlorin, and bacteriochlorins based on selective formation of the magnesium chelates. Collectively, these methods should broaden the scope of model systems based on magnesium chelates of porphyrinic compounds.
A simple method has been developed for metalation of porphyrinic compounds under homogeneous conditions at room temperature using a stable ethereal solution of MgI(2) and N,N-diisopropylethylamine. A previously developed heterogeneous procedure employs a mixture of a magnesium halide and a nonnucleophilic amine in a noncoordinating solvent at room temperature. The scope of the heterogeneous and homogeneous magnesium insertion procedures has been investigated across a family of 19 porphyrinic compounds, including synthetic porphyrins, synthetic or naturally occurring chlorins, and organic-soluble phthalocyanines. The rate of magnesium insertion increased in the series phthalocyanines < chlorins < porphyrins, which parallels the basicity of the ligands. Though phthalocyanines have the smallest core size, the magnesium phthalocyanines were far more stable than magnesium porphyrins to acid-induced demetalation. The heterogeneous method is broadly applicable to porphyrins, chlorins, and phthalocyanines. The homogeneous method is generally slower than the heterogeneous method, though both afford rapid metalation of most porphyrins, including electron-deficient, peripherally coordinating, or facially encumbered meso-substituted tetraarylporphyrins, and the beta-substituted octaethylporphyrin. Chlorin e(6) trimethyl ester and methyl pyropheophorbide a were metalated cleanly under homogeneous but not heterogeneous conditions, while pheophytin a failed with both methods. The homogeneous method failed altogether with phthalocyanines. Several methods in magnesium chemistry have been developed that augment these procedures, including a mild synthesis of tetraphenylchlorin and a streamlined separation of porphyrin, chlorin, and bacteriochlorins based on selective formation of the magnesium chelates. Collectively, these methods should broaden the scope of model systems based on magnesium chelates of porphyrinic compounds.
Light-harvesting arrays containing four porphyrins covalently linked to a phthalocyanine in a star-shaped architecture have been synthesized. Cyclotetramerization of an ethyne-linked porphyrin−phthalonitrile in 1-pentanol in the presence of MgCl2 and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) afforded the all-magnesium porphyrin−phthalocyanine pentad in 45% yield. Similar reaction using Zn(OAc)2·2H2O afforded the all-zinc porphyrin−phthalocyanine pentad in 15% yield. Arrays with different metals (free base, Mg, Zn) in the porphyrin and phthalocyanine macrocycles have been prepared by selective demetalation and metalation steps. This approach provides rapid and convergent access to multiporphyrin−phthalocyanine arrays in diverse metalation states. The arrays are reasonably soluble in organic solvents such as toluene, THF, and CH2Cl2. The arrays exhibit strong absorption in the blue and red regions. Time-resolved and static optical measurements indicate that intramolecular singlet-excited-state energy transfer from the porphyrin to the phthalocyanine moiety is extremely rapid (picoseconds) and efficient. Ground-state electronic communication among the porphyrins is indicated by rapid hole/electron hopping among the metalloporphyrins in the arrays as detected by EPR measurements on the singly oxidized pentads. These physical measurements indicate that the porphyrin−phthalocyanine pentads possess favorable characteristics for light harvesting and other photonics applications.
Effective light-harvesting arrays require multiple photoactive energy donors that funnel energy to an energy acceptor. Porphyrins and phthalocyanines are attractive components for light-harvesting arrays due to their strong absorption in the blue and red regions, respectively, and because energy transfer can occur from porphyrin to phthalocyanine regardless of their respective metalation states. Star-shaped light-harvesting arrays comprised of eight peripheral porphyrins and one core phthalocyanine have been prepared by a streamlined synthesis involving minimal reliance on protecting groups, a high degree of convergence, and facile chromatographic purification. The synthesis involves three distinct stages of complementary chemistries (porphyrin formation, Pdmediated porphyrin dimer formation, phthalocyanine formation). Statistical reaction of piodobenzaldehyde, a phthalonitrile-linked benzaldehyde, and 5-mesityldipyrromethane afforded the desired trans-iodo/phthalonitrile-substituted porphyrin, which underwent Pd-mediated coupling with a monoethynyl porphyrin to give the porphyrin dimer bearing a phthalonitrile unit. Reaction of the dimer in 1-pentanol in the presence of MgCl 2 and DBU for 48 h at 145 °C afforded the allmagnesium (porphyrin) 8 -phthalocyanine nonamer (MgP) 8 MgPc in 5.0% yield. The same reaction with lithium pentoxide in 1-pentanol for 2 h at 145 °C gave the all-free base nonamer (H 2 P) 8 H 2 Pc in 34% yield. The all-zinc nonamer (ZnP) 8 ZnPc was prepared by addition of zinc acetate at the end of the reaction. Similar treatment of a monomeric porphyrin-phthalonitrile afforded the pentameric (ZnP) 4 ZnPc in 58% yield. The (MgP) 8 MgPc was also obtained by magnesium insertion of (H 2 P) 8 H 2 -Pc. The three nonamers were readily purified and are soluble in solvents such as toluene, THF, and CH 2 Cl 2 . Each nonamer absorbs strongly across the solar spectrum and exhibits efficient energy transfer from the porphyrins to the phthalocyanine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.