Understanding the evolutionary history of living organisms is a central problem in biology. Until recently the ability to infer evolutionary relationships was limited by the amount of DNA sequence data available, but new DNA sequencing technologies have largely removed this limitation. As a result, DNA sequence data are readily available or obtainable for a wide spectrum of organisms, thus creating an unprecedented opportunity to explore evolutionary relationships broadly and deeply across the Tree of Life. Unfortunately, the algorithms used to infer evolutionary relationships are NP-hard, so the dramatic increase in available DNA sequence data has created a commensurate increase in the need for access to powerful computational resources. Local laptop or desktop machines are no longer viable for analysis of the larger data sets available today, and progress in the field relies upon access to large, scalable high-performance computing resources. This paper describes development of the CIPRES Science Gateway, a web portal designed to provide researchers with transparent access to the fastest available community codes for inference of phylogenetic relationships, and implementation of these codes on scalable computational resources. Meeting the needs of the community has included developing infrastructure to provide access, working with the community to improve existing community codes, developing infrastructure to insure the portal is scalable to the entire systematics community, and adopting strategies that make the project sustainable by the community. The CIPRES Science Gateway has allowed more than 1800 unique users to run jobs that required 2.5 million Service Units since its release in December 2009.
Structural genomics is emerging as a principal approach to define protein structure-function relationships. To apply this approach on a genomic scale, novel methods and technologies must be developed to determine large numbers of structures. We describe the design and implementation of a high-throughput structural genomics pipeline and its application to the proteome of the thermophilic bacterium Thermotoga maritima. By using this pipeline, we successfully cloned and attempted expression of 1,376 of the predicted 1,877 genes (73%) and have identified crystallization conditions for 432 proteins, comprising 23% of the T. maritima proteome. Representative structures from TM0423 glycerol dehydrogenase and TM0449 thymidylate synthase-complementing protein are presented as examples of final outputs from the pipeline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.