2010
DOI: 10.4064/ba58-3-7
|View full text |Cite
|
Sign up to set email alerts
|

Essentially Incomparable Banach Spaces of Continuous Functions

Abstract: We construct, under Axiom ♦, a family (C(K ξ )) ξ<2 (2 ω ) of indecomposable Banach spaces with few operators such that every operator from C(K ξ ) into C(Kη) is weakly compact, for all ξ = η. In particular, these spaces are pairwise essentially incomparable.Assuming no additional set-theoretic axiom, we obtain this result with size 2 ω instead of 2 (2 ω ) .

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
2
0
8

Year Published

2018
2018
2019
2019

Publication Types

Select...
2
2

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(10 citation statements)
references
References 9 publications
0
2
0
8
Order By: Relevance
“…where c is a scalar and S has its range included in c 0 ( [15], assuming CH or Martin's Axiom); (3) There exists C(K ) where every operator has the form gI + S, where g ∈ C (K ) and S is weakly compact (spaces with this property were constructed in [8][9][10][16][17][18]21,23] and discussed in [19,24]); (4) There exists C(K ) where every operator is a weak multiplier, i.e, for every operator T on C(K ), its adjoint T * on C(K ) * has the form gI + S, where g is a bounded Borel function and S is weakly compact (same references of the below item); (5) There exists an extremely non-complex C(K ). This means that every operator T on C(K ) satisfies the equality ||I + T…”
Section: Notions Of Few Operators On C(k ): An Overviewmentioning
confidence: 99%
“…where c is a scalar and S has its range included in c 0 ( [15], assuming CH or Martin's Axiom); (3) There exists C(K ) where every operator has the form gI + S, where g ∈ C (K ) and S is weakly compact (spaces with this property were constructed in [8][9][10][16][17][18]21,23] and discussed in [19,24]); (4) There exists C(K ) where every operator is a weak multiplier, i.e, for every operator T on C(K ), its adjoint T * on C(K ) * has the form gI + S, where g is a bounded Borel function and S is weakly compact (same references of the below item); (5) There exists an extremely non-complex C(K ). This means that every operator T on C(K ) satisfies the equality ||I + T…”
Section: Notions Of Few Operators On C(k ): An Overviewmentioning
confidence: 99%
“…Utilizaremos neste capítulo uma noção mais fraca de incomparabilidade, devida a Aiena e González (veja [AG]), chamada incomparabilidade essencial, apresentada na Definição 3.12. Em [Fa3], Fajardo constrói, assumindo ♦, uma família (C(K ξ )) ξ<2 (2 ω ) de espaços de Banach indecomponíveis e dois a dois essencialmente incomparáveis. No exemplo construído por Fajardo, cada K ξ era um espaço de Koszmider.…”
Section: Capítulo 3 Espaços De Banach Da Forma C(k) Essencialmente Inunclassified
“…No exemplo construído por Fajardo, cada K ξ era um espaço de Koszmider. Unindo as técnicas presentes em [Fa2] e [Fa3] construíremos, assumindo ♦, uma família (K ξ ) ξ<2 (2 ω ) de espaços conexos e hereditariamente Koszmider tais que C(K ξ ) e C(K η ) são essencialmente incomparáveis, para todo ξ = η. Como espaços hereditariamente Koszmider não contêm cópia de βN e nem sequências con-vergentes não trivias, cada espaço K ξ responde positivamente ao Problema de Efimov, sobre a existência de um compacto que não possui sequências convergentes não triviais nem βN como subespaço. O problema de Efimov já havia sido respondido positivamente em 1975 por Fedorchuk (veja [Fed]) assumindo apenas CH.…”
Section: Capítulo 3 Espaços De Banach Da Forma C(k) Essencialmente Inunclassified
See 2 more Smart Citations