Texture control of sputter-deposited nitride films has provoked a great deal of interest due to its technological importance. Despite extensive research, however, the reported results are scattered and discussions about the origin of preferred orientation (PO) are sometimes conflicting, and therefore controversial. The aim of this study is to acquire a clear perspective in order to discuss the origin of PO of sputter-deposited nitrides. Among nitrides, we focus on titanium nitride (TiN), aluminum nitride (AlN), and tantalum nitride (TaN), which are three commonly used nitrides. First, we collected reported experimental results about the relation between operating conditions and PO, because PO is considered to be determined by film formation processes, such as surface diffusion or grain growth, which is affected by operating conditions. We also collected reported results about such PO-determining processes. Then, we categorized the PO-determining processes into an initial stage and a growth stage of film deposition, and further categorized each stage into a vapor–solid interface and a solid–solid interface. Then, we related each stage and interface to film morphology and to PO-determining processes. Finally, based on existing results, previous models, and proposed schema, we discuss the origin of PO. Based on previous experimental results on film morphology, PO of nitride films occurred in the growth stage at the vapor–solid interface, where the sticking process of the precursor and the surface diffusion process determine PO, rather than in the initial stage and in the growth stage at the solid–solid interface. TiN (002) PO, however, seems to be caused in the initial stage at the solid–solid interface.