Background: Accurate assessment of lymph node status in gastric cancer (GC) patients can help to select appropriate treatment strategies for GC, but the diagnostic accuracy of conventional methods needs to be improved. The aim of this study was to investigate the predictive value of preoperative hemoglobin and albumin levels and lymphocyte and platelet counts (HALP) on lymph node status in GC patients and to construct a risk prediction model. Methods: This study retrospectively analyzed the clinicopathological characteristics of 349 patients with GC who underwent radical gastrectomy, among which 250 patients were recruited in the training cohort and 99 patients in the independent validation cohort. Significant risk factors in univariate analysis were further identified as independent variables in multivariate logistic regression analysis, which were then incorporated and presented in a nomogram. ROC curves, Calibration curve and DCA curves were used to evaluate the discrimination, prediction accuracy and clinical effectiveness of the model Results: Multifactorial logistic regression analysis showed that alcohol use (OR =2.203, P=0.036), Depth of invasion (OR =7.756, P<0.001), differentiation (OR =2.252, P=0.018), CEA (OR =2.443, P=0.017), CA199 (OR =2.715, P=0.008) and HALP (OR =2.276, P=0.032) were independent risk factors for lymph node metastasis (LNM) in GC. We used these factors to construct a nomogram for predicting LNM in GC patients, and the ROC curves showed good discrimination of the model with AUC values of 0.854 (training cohort) and 0.868 (validation cohort), respectively, and the calibration curves showed good predictive ability of the nomogram, in addition to the DCA curves results showed the clinical usefulness of the model. Conclusions: In conclusion, we established a nomogram for predicting LNM in patients with GC.