This paper presents a method for the computation of the static and dynamic stability derivatives of arbitrary aircraft configurations. Three-dimensional computational fluid dynamics are used in this method to simulate the flow characteristics around the configuration, and a moving-grid formulation is included in the flow solver to handle the rotational physics necessary for the computation of the dynamic derivatives. To obtain the stability derivatives, the computational fluid dynamics code is differentiated using the automatic differentiation adjoint (ADjoint) approach. This approach enables the efficient and accurate computation of derivatives for a wide variety of variables, including the dynamic model states that are typical of the stability derivatives. To demonstrate the effectiveness of this approach, stability derivatives are computed for a NACA 0012 airfoil and an ONERA M6 wing.