White-light-emitting single molecules are promising materials for use in a new generation of displays and light sources because they offer the possibility of simple fabrication with perfect color reproducibility and stability. To realize white-light emission at the molecular scale, thereby eliminating the detrimental concentration- or environment-dependent energy transfer problem in conventional fluorescent or phosphorescent systems, energy transfer between a larger band-gap donor and a smaller band-gap acceptor must be fundamentally blocked. Here, we present the first example of a concentration-independent ultimate white-light-emitting molecule based on excited-state intramolecular proton transfer materials. Our molecule is composed of covalently linked blue- and orange-light-emitting moieties between which energy transfer is entirely frustrated, leading to the production of reproducible, stable white photo- and electroluminescence.
A new nonlinear guidance logic, that has demonstrated superior performance in guiding unmanned air vehicles (UAVs) on curved trajectories, is presented. The logic approximates a proportional-derivative controller when following a straight line path, but the logic also contains an element of anticipatory control enabling tight tracking when following curved paths. The method uses inertial speed in the computation of commanded lateral acceleration and adds adaptive capability to the change of vehicle speed due to external disturbances, such as wind. Flight tests using two small UAVs showed that each aircraft was controlled to within 1.6 meters RMS when following circular paths. The logic was ultimately used for air rendezvous of the two aircraft, bringing them in close proximity to within 12 meters of separation, with 1.4 meters RMS relative position errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.