White-light-emitting single molecules are promising materials for use in a new generation of displays and light sources because they offer the possibility of simple fabrication with perfect color reproducibility and stability. To realize white-light emission at the molecular scale, thereby eliminating the detrimental concentration- or environment-dependent energy transfer problem in conventional fluorescent or phosphorescent systems, energy transfer between a larger band-gap donor and a smaller band-gap acceptor must be fundamentally blocked. Here, we present the first example of a concentration-independent ultimate white-light-emitting molecule based on excited-state intramolecular proton transfer materials. Our molecule is composed of covalently linked blue- and orange-light-emitting moieties between which energy transfer is entirely frustrated, leading to the production of reproducible, stable white photo- and electroluminescence.
We have designed and synthesized asymmetric cyano-stilbene derivatives containing trifluoromethyl (-CF(3)) substituents with the aim of producing tightly packed pi-dimer systems that as crystals exhibit reversible [2 + 2] cycloaddition with characteristic fluorescence modulation. (Z)-3-(3',5'-Bis(trifluoromethyl)biphenyl-4-yl)-2-(4'-(trifluoromethyl)biphenyl-4-yl)acrylonitrile (CN(L)-TrFMBE) and its derivatives were found to form antiparallel pi-dimer stacks in crystals due to their specific intermolecular interactions, including C-F...H and C-F...pi interactions. The CN(L)-TrFMBE pi-dimer crystals (and powder) are not at all fluorescent initially but switch to a highly fluorescent state (Phi(PL) = 24%) when an external shear-strain and/or prolonged UV (365 nm) irradiation is applied. Our experimental and theoretical investigations show that the fluorescence modulation in this particular system is due to the external and/or internal (in the case of UV irradiation) shear-induced lateral displacement of the pi-dimer molecular pair, which effectively turns the fluorescence emission on at the cost of frustrated [2 + 2] cycloaddition. Further, the fluorescence 'off' state can be restored by thermal annealing, which regenerates the tightly packed pi-dimer by reverse displacement together with the thermal dissociation of the [2 + 2] cycloaddition product. This system provides a very rare example of high-contrast reversible fluorescence switching that is driven by a change in the molecular packing mode in the solid state, which enables piezochromic and photochromic responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.