In studies involving the extraction of surface physical parameters using optical remote sensing satellite imagery, sun-sensor geometry must be known, especially for sensor viewing angles. However, while pixel-by-pixel acquisitions of sensor viewing angles are of critical importance to many studies, currently available algorithms for calculating sensor-viewing angles focus only on the center-point pixel or are complicated and are not well known. Thus, this study aims to provide a simple and general method to estimate the sensor viewing angles pixel by pixel. The Rational Function Model (RFM) is already widely used in high-resolution satellite imagery, and, thus, a method is proposed for calculating the sensor viewing angles based on the space-vector information for the observed light implied in the RFM. This method can calculate independently the sensor-viewing angles in a pixel-by-pixel fashion, regardless of the specific form of the geometric model, even for geometrically corrected imageries. The experiments reveal that the calculated values differ by approximately 10 −40 for the Gaofen-1 (GF-1) Wide-Field-View-1 (WFV-1) sensor, and by~10 −70 for the Ziyuan-3 (ZY3-02) panchromatic nadir (NAD) sensor when compared to the values that are calculated using the Rigorous Sensor Model (RSM), and the discrepancy is analyzed. Generally, the viewing angles for each pixel in imagery are calculated accurately with the proposed method.