Intermittent and periodic outbreaks of infectious diseases have had profound and lasting effects on societies throughout human history. During the global spread of SARS-CoV-2 and the resulting coronavirus disease (COVID-19), social distance has been imposed worldwide to limit the spread of the virus. An additional deliberate intention of keeping a minimum safety distance from neighbors can fundamentally alter the “social force” between individuals. Here, we introduce a new “social distance” term inspired by gas molecular dynamics and integrate it into an existing agent-based social force model to describe the dynamics of crowds under social-distanced conditions. The advantage of this “social distance” term over the simple increasing of the repulsive range of other alternatives is that the fundamental crowd properties are precisely described by our model parameters. We compare the new model with the Helbing and Molnar’s classical model and experimental data, and show that this new model is superior in reproducing experimental data. We demonstrate the usability of this model with a bottleneck motion base case. The new model shows that the bottleneck effect can be significantly alleviated through small wall modifications. Lastly, we explain the mechanism of this improvement and conclude that this improvement is due to spatial asymmetry.