Abstract. We identify sources (fossil fuel combustion versus
biomass burning) of black carbon (BC) in the atmosphere and in deposition
using a global 3-D chemical transport model GEOS-Chem. We validate the
simulated sources against carbon isotope measurements of BC around the globe and find that the model reproduces mean biomass burning contribution
(fbb; %) in various regions within a factor of 2 (except in Europe, where fbb is underestimated by 63 %). GEOS-Chem shows that contribution from biomass burning in the Northern Hemisphere (fbb: 35±14 %) is much less than that in the Southern Hemisphere (50±11 %). The largest atmospheric fbb is in Africa (64±20 %). Comparable contributions from biomass burning and fossil fuel combustion are found in southern (S) Asia (53±10 %), southeastern (SE) Asia (53±11 %), S America (47±14 %), the S Pacific (47±7 %), Australia (53±14 %) and the Antarctic (51±2 %). fbb is relatively small in eastern Asia (40±13 %), Siberia (35±8 %), the Arctic (33±6 %), Canada (31±7 %), the US (25±4 %) and Europe (19±7 %). Both observations and model results suggest that atmospheric fbb is higher in summer (59 %–78 %, varying with sub-regions) than in winter (28 %–32 %) in the Arctic, while it is higher in winter (42 %–58 %) and lower in summer (16 %–42 %) over the Himalayan–Tibetan Plateau. The seasonal variations of Atmosphericfbb are relatively flat in North America, Europe and Asia. We conducted four experiments to investigate the uncertainties associated with biofuel emissions, hygroscopicity of BC in fresh emissions, the aging rate and size-resolved wet scavenging. We find that doubling biofuel emissions for domestic heating north of 45∘ N increases fbb values in Europe in winter by ∼30 %, reducing the discrepancy between observed and modeled atmospheric fbb from −63 % to −54 %. The remaining large negative discrepancy between model and observations suggests that the biofuel emissions are probably still underestimated at high latitudes. Increasing the fraction of thickly coated hydrophilic BC from 20 % to 70 % in fresh biomass burning plumes increases the fraction of hydrophilic BC in biomass burning plumes by 0 %–20 % (varying with seasons and regions) and thereby reduces atmospheric fbb by up to 11 %. Faster aging (4 h e-folding time versus 1.15 d e-folding time) of BC in biomass burning plumes reduces atmospheric fbb by 7 % (1 %–14 %, varying with seasons and regions), with the largest reduction in remote regions, such as the Arctic, the Antarctic and the S Pacific. Using size-resolved scavenging accelerates scavenging of BC particles in both fossil fuel and biomass burning plumes, with a faster scavenging of BC in fossil fuel plumes. Thus, atmospheric fbb increases in most regions by 1 %–14 %. Overall, atmospheric fbb is determined mainly by fbb in
emissions and, to a lesser extent, by atmospheric processes, such as aging and scavenging. This confirms the assumption that fbb in local emissions determines atmospheric fbb in previous studies, which compared measured atmospheric fbb directly with local fbb in bottom-up emission inventories.