Clogging of the landfill drainage layer leads to a high leachate head developing over the bottom liner, which increases the risk of leachate leakage. Estimation of the maximum leachate head in the landfill drainage layer is of great significance to the pollution control of bottom liners. In this study, a simplified model considering the development of clogging is established through assuming the spatial and temporal distributions of clogging in a drainage layer of landfill. The calculation results are compared with a previous study to verify the proposed model. Through parameter analysis, it is discovered that the larger the initial hydraulic conductivity, the less the influence of clogging on the leachate head at the beginning, but it will increase over time. Meanwhile, a longer drainage distance, a larger inflow rate, or a higher ion concentration will lead to a greater influence of clogging on the leachate head. The completion time of clogging is more sensitive to the variation of inflow rate and ion concentration. In order to effectively control the maximum leachate head, it is suggested that the drainage material with large hydraulic conductivity such as pebbles or gravel should be used, the drainage slope should be greater than 4%, the drainage distance should be controlled at 20 m, and calcium products should be removed from leachate through adsorption, precipitation, or waste reuse.