The assessment of novel waste-to-energy technologies has several drawbacks due to the nature of the R1 formula. The 3T method, which aims to cover this gap, combines thermodynamic parameters in a radar graph and the overall efficiency is calculated from the area of the trapezoid. The present study expands the application of the 3T method in order to make it suitable for utilization in other energy-from-waste technologies. In the framework of this study, a 3T specialized solution is developed for the case of landfilling plus landfill gas recovery, with the potential inclusion of landfill mining. Numerical applications have been performed for waste-to-energy and landfilling by using both the R1 formula and the 3T method. The model Land GEM was used for the calculation of the total landfill gas. The Combined Heat and Power (CHP) efficiency of the landfill gas CHP efficiency was 16.6%–33.1%, and for the waste-to-energy plant, the CHP efficiency was over 70%. The full range of parameters, like metal recovery and quality of CHP, were not fully reflected by the R1 formula, which returned values of 1.07 for waste-to-energy and from 0.37 to 0.63 for different landfilling scenarios. Contrary to that, the 3T method calculated values between 0.091 and 0.307 for the waste-to-energy plant and values between 0.011 and 0.121 for the various landfilling scenarios. The 3T method is able to account for the recovery of materials like metals and assess the quality of the output flows. The 3T method was able to successfully provide a solution for the case of landfilling plus landfill gas recovery, with the potential inclusion of landfill mining, and directly compares the results with the conventional case of waste-to-energy.