Covid-19 Pandemic leads to medical services for the society all over the world. The Covid-19 pandemic influence the waste management and specially medical waste management. In this study, the effect of the Covid-19 outbreak on medical waste was evaluated via assessing the solid waste generation, composition, and management status in five hospitals in Iran. The results indicated that the epidemic Covid-19 leads to increased waste generation on average 102.2 % in both private and public hospitals. In addition, the ratio of infectious waste in the studied hospitals increased by an average of 9 % in medical waste composition and 121 % compared with before COVID-19 pandemic. Changes in plans and management measurement such as increasing the frequency of waste collection per week leads to lower the risk of infection transmission from medical waste in the studied hospitals. The results obtained from the present research clearly show the changes in medical waste generation and waste composition within pandemic Covid-19. In addition, established new ward, Covid-19 ward with high-infected waste led to new challenges which should be managed properly by change in routine activities.
In this work, Mn2O3/Fe2O3 (MFO) was synthesized and used to activate monopersulfate (MPS) for the degradation of ciprofloxacin (CIP). The effect of several parameters was studied on CIP degradation. Under the optimum conditions (pH = 6.3 (natural pH), MFO = 300 mg/L and MPS = 2 mM), around 92% of CIP was decomposed. Nitrite, phosphate and bicarbonate ions had a strong inhibitory effect on the MFO/MPS process while the effect of chloride and nitrate ions was neutral. The catalytic activity of MFO was also studied by other chemical oxidants such as peroxydisulfate, periodate, hydrogen peroxide, percarbonate and peracetic acid. Scavenging tests showed that the role of sulfate radicals is more than hydroxyl radicals. MFO exhibited high catalytic activity in four recycling with insignificant leaching of Mn and Fe. During CIP oxidation, 45.5% carbon mineralization occurred and antibacterial activity of treated solution CIP was reduced. Finally, MFO/MPS was applied on actual wastewater (hospital effluent) and the results showed that MFO/MPS can be considered as a practical method for the treatment of contaminated water with emerging pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.