[68Ga]Ga-RM2 is a promising innovative positron emission tomography (PET) tracer for patients with primary or metastatic prostate carcinoma. This study aims to analyze the biodistribution and radiation dosimetry of [68Ga]Ga-RM2 in five prostate cancer patients. The percentages of injected activity in the source organs and blood samples were determined. Bone marrow residence time was calculated using an indirect blood-based method. OLINDA/EXM version 2.0 (Hermes Medical Solutions, Stockholm, Sweden) was used to determine residence times, organ absorbed and effective doses. Physiological uptake was seen in kidneys, urinary bladder, pancreas, stomach, spleen and liver. Blood clearance was fast and followed by rapid clearance of activity from kidneys resulting in high activity concentrations in the urinary bladder. The urinary bladder wall was the most irradiated organ with highest mean organ absorbed dose (0.470 mSv/MBq) followed by pancreas (0.124 mSv/MBq), stomach wall (0.063 mSv/MBq), kidneys (0.049 mSv/MBq) and red marrow (0.010 mSv/MBq). The effective dose was found to be 0.038 mSv/MBq. Organ absorbed doses were found to be comparable to other gallium-68 labelled GRPR antagonists and lower than [68Ga]Ga-PSMA with the exception of the urinary bladder, pancreas and stomach wall. Remarkable interindividual differences were observed for the organ absorbed doses. Therefore, [68Ga]Ga-RM2 is a safe diagnostic agent with a significantly lower kidney dose but higher pancreas and urinary bladder doses as compared to [68Ga]Ga-PSMA.