Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: MRS and disregard MRI spectroscopy offers the capability of using magnetic resonance imaning (MRI) to noninvasively study tissue biochemistry. MRS is noninvasive technique that is used to study metabolic variance in brain tumors. Furthermore, diffusion-weighted imaging depicts the degree of water molecules diffusing across the unit volume of the region of interest as a result of sophisticated and dedicated software packages. Differences in apparent diffusion coefficient (ADC) values are related to changes in cellularity, cell membrane permeability, intracellular and extracellular diffusion, and tissue structure. Diffusion-weighted MRI is a powerful tool in the characterization of brain neoplasms. The present study attempts to derive the mean metabolite ratios as well as mean values of ADC with normalization in the setting of pituitary macroadenoma. Aim: (1) To evaluate mean metabolic ratios in pituitary macroadenomas using magnetic resonance spectroscopy (MRS) in rural hospital setup in Central India, (2) To evaluate mean apparent diffusion coefficient value with normalization in pituitary macroadenoma using magnetic resonance spectroscopy in a rural hospital setup in Central India. Materials and Methods: A cross-sectional hospital-based observational study conducted over 2 years. All cases registered with Acharya Vinoba Bhave Rural Hospital Sawangi, Wardha, diagnosed as pituitary macroadenomas were included in the present study. All patients were examined on GE Brivo MRI machine with 1.5 Tesla magnetic field strength in the Department of Radiodiagnosis. Diagnostic acumen was augmented with radiological features of brain tumors with metabolic ratios derived from metabolic values and ADC values. Results: Out of 142 patients included, pituitary macroadenoma cases were 18 in number. Observed metabolite ratios were derived from metabolic values obtained on MRS for choline (Cho), creatinine (Cr), lipid lactate, myoinositol, and n-acetyl aspartate (NAA). Ratios were calculated for Cho: Cr, Cho: NAA, Cho: myoinositol and Cho: lipid lactate. The range for Cho: Cr, Cho: NAA, Cho: myoinositol, and Cho: lipid lactate was 1.04–4.73, 0.96–4.12, 1.21–3.12, and 0.72–1.812, respectively. The mean values for Cho: Cr, Cho: NAA, Cho: myoinositol, and Cho: lipid lactate were 1.8655, 1.6094, 1.5561, and 1.4567, respectively. The range of ADC values observed was from 0.821 × 10−3 mm2/s to 1.523 × 10−3 mm2/s. Normalized ADC values were calculated on basis of observed ADC values in the numerator and the average ADC value of gray matter in the denominator which is taken as 0.8 and was in the range of 1.02625 × 10−3 mm2/s to 1.90375 × 10−3 mm2/s. The mean ADC value was calculated as 1.22 × 10−3 mm2/s. The mean normalized ADC value was calculated as 1.52 × 10−3 mm2/s. Conclusion: The research gap analysis toward which research question was framed stands filled up by generated new knowledge in terms of “mean metabolic ratios” and “ADC” values with reference to pituitary macroadenomas in the present study.
Background: MRS and disregard MRI spectroscopy offers the capability of using magnetic resonance imaning (MRI) to noninvasively study tissue biochemistry. MRS is noninvasive technique that is used to study metabolic variance in brain tumors. Furthermore, diffusion-weighted imaging depicts the degree of water molecules diffusing across the unit volume of the region of interest as a result of sophisticated and dedicated software packages. Differences in apparent diffusion coefficient (ADC) values are related to changes in cellularity, cell membrane permeability, intracellular and extracellular diffusion, and tissue structure. Diffusion-weighted MRI is a powerful tool in the characterization of brain neoplasms. The present study attempts to derive the mean metabolite ratios as well as mean values of ADC with normalization in the setting of pituitary macroadenoma. Aim: (1) To evaluate mean metabolic ratios in pituitary macroadenomas using magnetic resonance spectroscopy (MRS) in rural hospital setup in Central India, (2) To evaluate mean apparent diffusion coefficient value with normalization in pituitary macroadenoma using magnetic resonance spectroscopy in a rural hospital setup in Central India. Materials and Methods: A cross-sectional hospital-based observational study conducted over 2 years. All cases registered with Acharya Vinoba Bhave Rural Hospital Sawangi, Wardha, diagnosed as pituitary macroadenomas were included in the present study. All patients were examined on GE Brivo MRI machine with 1.5 Tesla magnetic field strength in the Department of Radiodiagnosis. Diagnostic acumen was augmented with radiological features of brain tumors with metabolic ratios derived from metabolic values and ADC values. Results: Out of 142 patients included, pituitary macroadenoma cases were 18 in number. Observed metabolite ratios were derived from metabolic values obtained on MRS for choline (Cho), creatinine (Cr), lipid lactate, myoinositol, and n-acetyl aspartate (NAA). Ratios were calculated for Cho: Cr, Cho: NAA, Cho: myoinositol and Cho: lipid lactate. The range for Cho: Cr, Cho: NAA, Cho: myoinositol, and Cho: lipid lactate was 1.04–4.73, 0.96–4.12, 1.21–3.12, and 0.72–1.812, respectively. The mean values for Cho: Cr, Cho: NAA, Cho: myoinositol, and Cho: lipid lactate were 1.8655, 1.6094, 1.5561, and 1.4567, respectively. The range of ADC values observed was from 0.821 × 10−3 mm2/s to 1.523 × 10−3 mm2/s. Normalized ADC values were calculated on basis of observed ADC values in the numerator and the average ADC value of gray matter in the denominator which is taken as 0.8 and was in the range of 1.02625 × 10−3 mm2/s to 1.90375 × 10−3 mm2/s. The mean ADC value was calculated as 1.22 × 10−3 mm2/s. The mean normalized ADC value was calculated as 1.52 × 10−3 mm2/s. Conclusion: The research gap analysis toward which research question was framed stands filled up by generated new knowledge in terms of “mean metabolic ratios” and “ADC” values with reference to pituitary macroadenomas in the present study.
Background: To evaluate mean metabolite ratios and Apparent diffusion co-efficient value with normalization in cerebral metastases using MRS in rural hospital setup in Central India. Method: A cross sectional hospital based observational study conducted over a time period of 2 years. All the cases registered with Acharya Vinoba Bhave Rural Hospital, Sawangi, Wardha, diagnosed on histopathological findings as cerebral metastases were included in this present study. All patients were examined on GE Brivo MRI machine with 1.5 Tesla magnetic field strength in the Department of Radiodiagnosis using b value of 1000 s/sq. mm, slice thickness 5mm, interslice gap 2mm applied in the x, y and z axes, central as well as peripheral portions of the tumor were manually sampled, preferably getting rid of cystic or necrotic areas. Histopathological diagnostic acumen was augmented with ADC values with normalization. Result: Range of ADC values observed was from 0.683 10-3 mm2/s to 0.873 10-3 mm2/s. Normalized ADC values were calculated on basis of observed ADC values and were in range of 0.8537510-3 mm2/s to 1.09125 10-3 mm2/s. Mean ADC value was calculated as 0.749 x 10-3 mm2/s. Mean normalised ADC value was calculated to be 0.9372 x 10-3 mm2/s. Observed metabolite ratios were derived from metabolic values obtained on MRS for Choline, Creatinine, Lipid lactate, myoinositol and n-acetyl aspartate. Range for Choline:Creatinine, Choline:n-acetyl aspartate, choline : myoinositol and choline : lipid lactate was 3.97 to 5.73, 3.24 to 5.76, 4.35 to 5.49 and 0.32 to 0.997 respectively. Mean values for Choline:Creatinine, Choline:n-acetyl aspartate, choline : myoinositol and choline : lipid lactate were 4.1289, 3.7838, 4.1256 and 0.9095 respectively. Conclusion: Research gap analysis towards which research question was framed stands filled up by the generated new knowledge in terms of 'Mean metabolite ratios','Apparent Diffusion Coefficient' and 'Normalised Apparent Diffusion Coefficient' values for cerebral metastases in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.