The chemokine stromal cell-derived factor-1 (C-X-C motif chemokine ligand 12; CXCL12) is important in the recruitment of leukocytes to the peritoneal cavity and the regulation of endometriotic tissue growth in endometriosis patients. However, the alterations in microRNA (miRNA) expression induced by CXCL12 remain to be fully elucidated. The present study evaluated key miRNAs in CXCL12-stimulated endometrial stromal cells (ESCs), and investigated the underlying cellular regulatory mechanisms of CXCL12 in endometriosis by building networks between miRNAs, genes and gene ontologies (GOs). Differential expression of miRNAs and mRNAs induced by CXCL12 stimulation in ESCs was measured using miRNA and gene chips, and it was observed that 35 miRNAs and 1,671 mRNAs were differentially expressed. Using potential target genes of the 35 miRNAs, intersections of these genes were examined and 63 intersection genes were identified. A total of 39 GOs were obtained for these intersection genes, based on information from GO databases, including immune cell chemoattractants, inflammatory and immune responses, and pathological processes of endometriotic lesions in endometriosis. In addition, miRNA-gene networks were built according to the GO and Kyoto Encyclopedia of Genes and Genomes databases. The present study, to the best of our knowledge, provides the most complete miRNAome and mRNAome profiles, and the most detailed investigation of the underlying cellular regulatory mechanisms, of the effects of CXCL12 in endometriosis. These results may facilitate the complete elucidation of the role of CXCL12 in endometriosis, and its underlying epigenetic mechanisms.