In prostate cancer, the signals that drive cell proliferation change as tumors progress from castration-sensitive (androgen-dominant) to castration-resistant states. While the mechanisms underlying this change remain uncertain, characterization of common signaling components that regulate both stages of prostate cancer proliferation is important for developing effective treatment strategies. Here, we demonstrate that paxillin, a known cytoplasmic adaptor protein, regulates both androgen-and EGF-induced nuclear signaling. We show that androgen and EGF promoted MAPK-dependent phosphorylation of paxillin, resulting in nuclear translocation of paxillin. We found nuclear paxillin could then associate with androgen-stimulated androgen receptor (AR). This complex bound AR-sensitive promoters, retaining AR within the nucleus and regulating ARmediated transcription. Nuclear paxillin also complexed with ERK and ELK1, mediating c-FOS and cyclin D1 expression; this was followed by proliferation. Thus, paxillin is a liaison between extranuclear MAPK signaling and nuclear transcription in response to androgens and growth factors, making it a potential regulator of both castration-sensitive and castration-resistant prostate cancer. Accordingly, paxillin was required for normal growth of human prostate cancer cell xenografts, and its expression was elevated in human prostate cancer tissue microarrays. Paxillin is therefore a potential biomarker for prostate cancer proliferation and a possible therapeutic target for prostate cancer treatment.
IntroductionProstate cancer is associated with significant morbidity and mortality and is the second most common cancer among men worldwide. One feature of prostate cancer progression is its apparent change in androgen responsiveness over time. At diagnosis, locally advanced prostate cancers are treated successfully by prostatectomy, irradiation, and/or anti-androgen therapy, suggesting that tumor cells are dependent on androgens for continued growth and survival. In contrast, despite treatment, many advanced tumors enter a more aggressive castration-resistant state after 18-24 months. This observation suggests fundamental changes in the extracellular triggers and intracellular signaling pathways that regulate proliferation and cell migration (1-3) in aggressive tumors. The reasons for this dramatic transformation in phenotype are not well understood. However, several likely interconnected mechanisms of castration resistance have been proposed. For example, alterations in intraprostatic androgen production or metabolism ("intracrine" androgen production) in castration-resistant prostate cancer (4, 5) could lead to elevated local androgen concentrations in the setting of low serum androgen levels. Alternatively, the abundance or activity of androgen receptors (ARs) and their various transcriptional coregulators might be modified in castration-resistant prostate cancer cells so that they respond to lower concentrations of androgen or other steroids (6). Finally, prostate cancer cells might ad...