The traditional rodent uterotropic response assay has been incorporated into the U.S. Environmental Protection Agency's screening and testing program for environmental endocrine-disrupting chemicals (EDCs). While much effort continues to focus on determining protocol variables, few studies compare uterotropic responses in rats, a species commonly used in toxicologic testing, with other rodent species. In this study, we compared uterine responses in immature outbred CD-1 mice and Sprague-Dawley rats. After three daily subcutaneous injections with 17beta-estradiol (0.1-500 microg/kg/day), immature mice and rats demonstrated a similar dose-response increase in absolute uterine wet weight and uterine weight:body weight ratio. Further, morphologic and biochemical parameters of estrogenicity, including uterine epithelial cell height and number, gland number, and induction of estrogen-responsive proteins lactoferrin and complement C3, mirror wet weight increases. We conclude that mice are as well suited as rats for the uterotropic bioassay. Because of the advantages of using mice, including lower costs, less space required, and smaller amounts of compound needed for tests, mice should be given appropriate consideration in testing paradigms for EDCs.