“…Functional alterations in related circuits, including the central amygdala, frontal cortex, NAc, and bed nucleus of the stria terminalis (BNST) have been vigorously examined, and several molecular mechanisms have been implicated in the transition from acute to chronic alcohol consumption, including corticotropin-releasing factor (CRF), neuropeptide Y (NPY), and endogenous opioids (Mitchell et Although alcohol-induced effects on glia have not been as extensively characterized as its effects on neurons, accumulating evidence suggests that both microglia and astrocytes are impacted by acute and chronic alcohol. Early in vitro work with astrocyte progenitors cultured from fetal rat brains found that acute alcohol resulted in reduced GFAP expression in addition to stunted astrocyte cell proliferation (Guerri et al, 1990;Renau-Piqueras et al, 1989). In vivo, rats given free access to alcohol show increased activation of astrocytes (measured by GFAP) in discrete subregions of the hippocampus following shorter exposure periods (4-12 weeks), but decreased astrocyte activation was observed following extended drug access (36 weeks) (Franke, 1995).…”