Background:The HER-2 receptor undergoes a proteolytic cleavage generating an NH 2 -terminally truncated fragment, p95HER-2, that is membrane-associated and tyrosine-phosphorylated.We have reported that p95HER-2, but not the full-length receptor, p185HER-2, correlated with the extent of lymph node involvement in patients with breast cancer and its expression was significantly enhanced in nodal metastatic tissue. These facts suggested an important role for p95HER-2 either as a marker or cause of metastasis and poor outcome in breast cancer. In this work, we have studied the prognostic value of p95HER-2 in breast cancer. Methods: Primary breast tumor tissues (n = 483) were from surgical resections conducted in hospitals in two different countries: the U.S. (n = 334) and Spain (n = 149). HER-2 protein forms, including p185HER-2 and p95HER-2, were examined in extracts of primary breast tumors by Western blot analysis. The levels of the two forms (high or low) were tested for association with other clinicopathologic factors and for correlation with disease-free survival. Results:The median follow-up was 46 months. A high level of p95HER-2 in primary tumor tissue correlated with reduced 5-year disease-free survival (hazard ratio, 2.55; 95% confidence interval, 2.13-8.01; P < 0.0001). The median time for disease-free survival was 32 versus 139 months in patients with low levels of p95HER-2. In comparison, high levels of the full-length p185HER-2 did not significantly correlate with poor outcome (P > 0.1). Multivariate analysis revealed that high p95HER-2 was an independent predictor of disease-free survival (hazard ratio, 1.59; 95% confidence interval, 1.246-1.990; P = 0.0004). Conclusions: p95HER-2 expression is an independent prognostic factor in breast cancer and defines a group of patients with HER-2-positive breast cancer with significantly worse outcome.
Multiple biological functions have been ascribed to the Ras-related G protein R-Ras. These include the ability to transform NIH 3T3 fibroblasts, the promotion of cell adhesion, and the regulation of apoptotic responses in hematopoietic cells. To investigate the signaling mechanisms responsible for these biological phenotypes, we compared three R-Ras effector loop mutants (S61, G63, and C66) for their relative biological and biochemical properties. While the S61 mutant retained the ability to cause transformation, both the G63 and the C66 mutants were defective in this biological activity. On the other hand, while both the S61 and the C66 mutants failed to promote cell adhesion and survival in 32D cells, the G63 mutant retained the ability to induce these biological activities. Thus, the ability of R-Ras to transform cells could be dissociated from its propensity to promote cell adhesion and survival. Although the transformation-competent S61 mutant bound preferentially to c-Raf, it only weakly stimulated the mitogen-activated protein kinase (MAPK) activity, and a dominant negative mutant of MEK did not significantly perturb R-Ras oncogenicity. Instead, a dominant negative mutant of phosphatidylinositol 3-kinase (PI3-K) drastically inhibited the oncogenic potential of R-Ras. Interestingly, the ability of the G63 mutant to induce cell adhesion and survival was closely associated with the PI3-K-dependent signaling cascades. To further delineate R-Ras downstream signaling events, we observed that while a dominant negative mutant of Akt/protein kinase inhibited the ability of R-Ras to promote cell survival, both dominant negative mutants of Rac and Ral suppressed cell adhesion stimulated by R-Ras. Thus, the biological actions of R-Ras are mediated by multiple effectors, with PI3-K-dependent signaling cascades being critical to its functions.
In higher organisms, dietary proteins are broken down into amino acids within the digestive tract but outside the cells, which incorporate the resulting amino acids into their metabolism. However, under certain conditions, an organism loses more nitrogen than is assimilated in the diet. This additional loss was found in the past century to come from intracellular proteins and started an intensive research that produced an enormous expansion of the field and a dispersed literature. Therefore, our purpose is to provide an updated summary of the current knowledge on the proteolytic machinery involved in intracellular protein degradation and its physiological and pathological relevance, especially addressed to newcomers in the field who may find further details in more specialized reviews. However, even providing a general overview, this is an extremely wide field and, therefore, we mainly focus on mammalian cells, while other cells will be mentioned only for comparison purposes.
Using astrocytes obtained from 21-day-old rat fetuses, in primary culture, we have analyzed the effect of prenatal alcohol consumption on DNA and protein synthesis of astrocytes during their development. The variation in sensitivity of astrocytes to ethanol "in vitro" during the proliferation and maturation periods was also assessed. Control astrocytes showed peaks of DNA and protein synthesis at 8 and 15 days, respectively. A significant decrease in both DNA and protein synthesis was found in astrocytes from fetuses prenatally exposed to ethanol. This effect on DNA synthesis was also observed when control astrocytes were exposed to ethanol (100 mM) "in vitro" during the entire culture period. The effects on astrocytes of short term (48h) exposure to ethanol during the proliferation or differentiation periods on the above mentioned parameters and on the cell cycle as well as the possible recovery from these effects were also evaluated. Decreases in DNA and protein synthesis were found in both periods. However, DNA synthesis and content were more affected in astrocytes exposed to ethanol during the proliferation period. This effect correlates with an accumulation of cells in the G0/G1 phase of the cell cycle. On the other hand, when cells exposed to ethanol were cultured in alcohol-free medium to assess recovery, only cells exposed to ethanol during days 4 to 6 still showed DNA ethanol-induced effects at 21 days. In conclusion, our results show that ethanol consumption during gestation induces serious damage to cortical astrocyte progenitor cells.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.