Migrants diagnosed with schizophrenia are overrepresented in forensic-psychiatric clinics. A comprehensive characterization of this offender subgroup remains to be conducted. The present exploratory study aims at closing this research gap. In a sample of 370 inpatients with schizophrenia spectrum disorders who were detained in a Swiss forensic-psychiatric clinic, 653 different variables were analyzed to identify possible differences between native Europeans and non-European migrants. The exploratory data analysis was conducted by means of supervised machine learning. In order to minimize the multiple testing problem, the detected group differences were cross-validated by applying six different machine learning algorithms on the data set. Subsequently, the variables identified as most influential were used for machine learning algorithm building and evaluation. The combination of two childhood-related factors and three therapy-related factors allowed to differentiate native Europeans and non-European migrants with an accuracy of 74.5% and a predictive power of AUC = 0.75 (area under the curve). The AUC could not be enhanced by any of the investigated criminal history factors or psychiatric history factors. Overall, it was found that the migrant subgroup was quite similar to the rest of offender patients with schizophrenia, which may help to reduce the stigmatization of migrants in forensic-psychiatric clinics. Some of the predictor variables identified may serve as starting points for studies aimed at developing crime prevention approaches in the community setting and risk management strategies tailored to subgroups of offenders with schizophrenia.