The COVID-19 pandemic has strengthened the interest in the biological mechanisms underlying the complex interplay between infectious agents and the human host. The spectrum of phenotypes associated with the SARS-CoV-2 infection, ranging from the absence of symptoms to severe systemic complications, raised the question as to what extent the variable response to coronaviruses (CoVs) is influenced by the variability of the hosts’ genetic background.
To explore the current knowledge about this question, we designed a systematic review encompassing the scientific literature published from Jan. 2003 to June 2020, to include studies on the contemporary outbreaks caused by SARS-CoV-1, MERS-CoV and SARS-CoV-2 (namely SARS, MERS and COVID-19 diseases). Studies were eligible if human genetic variants were tested as predictors of clinical phenotypes.
An ad hoc protocol for the rapid review process was designed according to the PRISMA paradigm and registered at the PROSPERO database (ID: CRD42020180860). The systematic workflow provided 32 articles eligible for data abstraction (28 on SARS, 1 on MERS, 3 on COVID-19) reporting data on 26 discovery cohorts. Most studies considered the definite clinical diagnosis as the primary outcome, variably coupled with other outcomes (severity was the most frequently analysed). Ten studies analysed HLA haplotypes (1 in patients with COVID-19) and did not provide consistent signals of association with disease-associated phenotypes. Out of 22 eligible articles that investigated candidate genes (2 as associated with COVID-19), the top-ranked genes in the number of studies were ACE2, CLEC4M (L-SIGN), MBL, MxA (n = 3), ACE, CD209, FCER2, OAS-1, TLR4, TNF-α (n = 2). Only variants in MBL and MxA were found as possibly implicated in CoV-associated phenotypes in at least two studies. The number of studies for each predictor was insufficient to conduct meta-analyses.
Studies collecting large cohorts from different ancestries are needed to further elucidate the role of host genetic variants in determining the response to CoVs infection. Rigorous design and robust statistical methods are warranted.